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Abstract

This paper examines several multi-model combination techniques: the Simple Multi-

model Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-

Model Super Ensemble (M3SE) and the Weighted Average Method (WAM).  These 

model combination techniques were evaluated using the results from the Distributed 

Model Intercomparison Project (DMIP), an international project sponsored by the 

National Weather Service (NWS) Office of Hydrologic Development (OHD).  All of the 

multi-model combination results were obtained using uncalibrated DMIP model outputs 

and were compared against the best uncalibrated as well as the best calibrated individual 

model results.  The purpose of this study is to understand how different combination 

techniques affect the skill levels of the multi-model predictions.  This study revealed that 

the multi-model predictions obtained from uncalibrated single model predictions are 

generally better than any single member model predictions, even the best calibrated 

single model predictions. Furthermore, more sophisticated multi-model combination 

techniques that incorporated bias correction steps work better than simple multi-model 

average predictions or multi-model predictions without bias correction.
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1. Introduction:

Many hydrologists have been working to develop new hydrologic models or to try 

improving the existing ones.  Consequently, a plethora of hydrologic models are in 

existence today, with many more likely to emerge in the future (Singh 1995, Singh and 

Frevert, 2002a and 2002b).  With the advancement of the Geographic Information 

System (GIS), a class of models, known as distributed hydrologic models, has become 

popular (Russo et al., 1994, Vieux, 2001).  These models explicitly account for spatial 

variations in topography, meteorological inputs and water movement.  The National 

Weather Service Hydrology Laboratory has recently conducted the Distributed Model 

Intercomparison Project (DMIP) that showcased the state-of-the-art distributed 

hydrologic models from different modeling groups (Smith et al., 2004).  It was found that 

there is a large disparity in the performance of the DMIP models (Reed et al., 2004).  The 

more interesting findings were that multi-model ensemble averages perform better than 

any single model predictions, including the best calibrated single model prediction, and 

that multi-model ensemble averages are more skillful and reliable than the single model 

ensemble averages (Georgakakos et al., 2004). Georgakakos et al. (2004) attributed the 

superior skill of the multi-model ensembles to the fact that model structural uncertainty is 

accounted for in the multi-model approach.  They went on to suggest that multi-model 

ensemble predictions should be considered as an operational forecasting tool.  The fact 

that the simple multi-model averaging approach such as the one used by Georgakakos et 

al. (2004) has led to more skillful and reliable predictions has motivated us to examine 

whether more sophisticated multi-model combination techniques can result in consensus 

predictions of even better skills.
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Most hydrologists are used to the traditional contructionist approach, in which the 

goal of the modeler is to build a perfect model that can capture the real world processes 

as much as possible.   Multi-model combination approach, on the other hand, works in 

essentially a different paradigm in which the modeler aims to extract as much 

information as possible from the existing models.  The idea of combining predictions 

from multiple models was explored more than thirty years ago in econometrics and 

statistics (see Bates and Granger, 1969; Dickinson, 1973 and 1975; Newbold and 

Granger, 1974).  In 1976, Thompson applied the model combination concept in weather 

forecasting.  He showed that the mean square error of forecast generated by combining 

two independent model outputs is less than that of the individual predictions.  Based on 

the study done by Clement (1989), the concept of the combination forecasts from 

different models were applied in diverse fields ranging from management to weather 

prediction.  Fraedrich and Smith (1989) presented a linear regression technique to 

combine two statistical forecast methods for long-range forecasting of the monthly 

tropical Pacific sea surface temperatures (SST).  Krishnamurti et al. (1999) explored the 

model combination technique by using number of forecasts from a selection of different 

weather and climate models.  They called their technique Multi-Model Superensemble 

(MMSE) and compared it to simple model averaging (SMA) method.  Krishnamurti and 

his group applied the MMSE technique to forecast various weather and climatological 

variables (e.g. precipitation, tropical cyclones, seasonal climate) and all of these studies 

agreed that consensus forecast outperforms any single member model as well as the SMA 

technique (e.g. Krishnamurti et al., 1999; Krishnamurti, et al., 2000a,b; Krishnamurti et 

al., 2001; Krishnamurti et al., 2002; Mayers et al., 2001; Yun et al. 2003).  Khrin and 
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Zwiers (2002) reported that for small sample size data the MMSE does not perform as 

well as simple ensemble mean or the regression-improved ensemble mean. 

Shamseldin et al, (1997) first applied the model combination technique in the 

context of rainfall-runoff modeling.  They studied three methods of combining model 

outputs, the SMA method, the Weighted Average Method (WAM) and the Artificial 

Neural Network (ANN) method.  They applied these methods to combine outputs of five 

rainfall-runoff models for eleven watersheds.  For all these cases they reported that the 

model combination prediction is superior to that of any single model predictions.  Later 

Shamseldin and O’Connor (1999) developed a Real-Time Model Output Combination 

Method (RTMOCM), based on the Linear Transfer Function Model (LTFM) and the 

WAM and tested it using three rainfall-runoff models on five watersheds.  Their results 

indicated that the combined flow forecasts produced by RTMOCM were superior to those 

from the individual rainfall-runoff models.  Xiong et al. (2001) refined the RTMOCM 

method by introducing the concept of Takagi-Sugeno fuzzy system as a new combination 

technique.  Abrahart and See (2002) compared six different model combination 

techniques: the SMA; a probabilistic method in which the best model from the last time 

step is used to create the current forecast; two different neural network operations and 

two different soft computing methodologies. They found that neural network 

combination techniques perform the best for a stable hydro-climate regime, while fuzzy 

probabilistic mechanism generated superior outputs for more volatile environment 

(flashier catchments with extreme events).
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This paper extends the work of Georgakakos et al. (2004) and that of Shamseldin 

et al. (1997) by examining several multi-model combination techniques, including SMA, 

MMSE, WAM, and a variant of MMSE, known as Bias Corrected Multi-model Average 

(BCMA).  As in Georgakakos et al. (2004), we will use the results from DMIP to 

evaluate various multi-model combination techniques.  Through this study, we would like 

to answer the following basic question: “Does it matter which multi-model combination 

techniques are used to obtain consensus prediction”?  We will also investigate how the 

skills of the multi-model predictions are influenced by different factors, including the 

seasonal variations of hydrological processes, number of independent models considered, 

lengths of training data, etc.  The paper is organized as follows.  Section 2 overviews 

different model combination techniques.  Section 3 describes the data used in this study.  

Section 4 presents the results and analysis.  Section 5 provides major lessons and 

conclusions.

2. Brief Description of the Multi-model Combination Techniques

2.1 Multi-Model SuperEnsemble, MMSE:

Multi-Model Super-Ensemble, MMSE, is a multi-model forecasting approach 

popular in meteorological forecasting.  MMSE uses the following logic (Krishnamurti et 

al., 2000):

 ∑ −+=
=

N

i
isimtisimiobstMMSE QQxQQ

1
, ))()(()(  (1)
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Where tMMSEQ )( is the multi-model prediction obtained through MMSE at time t, 

tisimQ ,)( is the ith model streamflow simulation for time t, isimQ )( is the average of the 

ith model prediction over the training period, )( obsQ is observed average over the 

training period, {xi, i=1,2,…, N}are the regression coefficients (weights) computed over 

the training period, and finally N is the number of hydrologic models. 

Equation (1) comprises two main terms. First term, )( obsQ , which replaces the 

MMSE prediction average with the observed average, serves to reduce the forecast bias. 

Second term ])()[( , isimtisimi QQx∑ − , reduces the variance of the combination 

predictions, using multiple regressions. Therefore, the logic behind this methodology is a 

simple idea of bias correction along with variance reduction.  We should also note that 

when a multi-model combination technique such as MMSE is used to predict hydrologic 

variables like river flows, it is important that the average river flows during the training 

period over which the model weights are computed should be close to the average river 

flow of the prediction period (i.e., the stationarity assumption).  In Section 4, we will 

show that bias removal and stationarity assumption are important factors in multi-model 

predictive skills.

2.2. Modified Multi-Model Super Ensemble, M3SE

Modified Multi–Model Super Ensemble (M3SE) technique is a variant of the 

MMSE.  This technique works in the same way as in MMSE except the bias correction 

step.  In MMSE, model bias is removed by replacing the average of the predictions by the 
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average of observed flows.  In M3SE, the bias is removed by mapping the model 

prediction at each time step to the observed flow with the same frequency as the 

forecasted flow.  Figure (1) illustrates how forecasted flows are mapped into observed 

flows through frequency mapping.  The solid arrow shows the original value of the 

forecast and the dashed arrow points to the corresponding observed value.  The frequency 

mapping bias correction method has been popular in hydrology because it the bias 

corrected hydrologic variables agree well statistically with the observations, while the 

bias correction procedure used in MMSE might lead to unrealistic values (i.e., negative 

values).  After removing bias from each model forecast, the same solution procedure for 

MMSE is applied to M3SE.

2.3. Weighted Average method, WAM

Weighted Average Method (WAM) is one of the model combination techniques 

specifically developed for rainfall-runoff modeling by Shamseldin et al. (1997).  This 

method also utilizes the Multiple Linear Regression (MLR) technique to combine the 

model predictions.  The model weights are constrained to be always positive and to sum 

up to unity.  If we have model predictions from N models, WAM can be expressed as:

  ∑ ⋅=
=

N

i
tisimitWAM QxQ

1
,)()( (2)
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Where tWAMQ )( is the multi-model prediction obtained through WAM at time t.  

Constrained Least Square can be used to solve the equation and estimate the weights.  For 

more details about this method reader should refer to Shamseldin et al. (1997).

2.4 Simple Model Average, SMA

The Simple Model Average (SMA) method is the multi-model ensemble 

technique used by Georgakakos et al. (2004).  This is the simplest technique and is used 

as a benchmark in evaluating more sophisticated techniques in this work.  SMA can be 

expressed by the following equation:

  ∑
−

+=
=

N

i

isimtisim
obstSMA N

QQ
QQ
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Where tSMAQ )( is the multi-model prediction obtained through SMA at time t.

2.5 Differences Between the Four Multi-model Combination Techniques

The major differences between these multi-model combination methods are the 

model weighting scheme and the bias removal scheme.  MMSE, M3SE and WAM have 

variable model weights, while SMA has equal model weights. MMSE and M3SE 

compute the model weights through multiple linear regressions while WAM computes 

the model weights using constrained least square approach that ensures positive model 

weights and total weights equal to 1.  With respect to bias correction, MMSE and SMA 

remove the bias by replacing the prediction mean with the observed mean, while WAM 

does not incorporate any bias correction.  M3SE removes the bias by using frequency 

mapping method as illustrated in Section 2.3.  
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3. The Study Basins and Data:

We have chosen to evaluate the multi-model combination methods using model 

outputs collected from DMIP (Smith et al., 2004).  DMIP was conducted over the basins 

in the Arkansas Red River basins.  Five basins of the DMIP basins are included in this 

study: Illinois River basin at Watts, OK, Illinois River basin at Eldon, OK, Illinois River 

basin at Tahlequah, OK, Blue River basin at Blue, OK, and Elk River basin at Tiff City, 

MO. Fig. 2 shows the location of the basins while Table 1 lists the basin topographic and 

climate information.  Silty clay is the dominant soil texture type of those basins, except 

for Blue River, where the dominant soil texture is clay.  The land cover of those basins is 

dominated by natural forest and agriculture crops (Smith et al., 2004). 

The average maximum and minimum surface air temperature in the region are 

approximately 22°C and 9°C, respectively. Summer maximum temperatures can get as 

high as 38°, and freezing temperatures occur generally in December through February. 

The climatological annual average precipitation of the region is between 1010-1160 

mm/yr (Smith et al., 2004).

Seven different modeling groups contributed to DMIP by producing flow 

simulation for the DMIP basins using their own distributed models, driven by DMIP 

provided meteorological forcing data.  The precipitation data, available at 4x4 km2 spatial 

resolution, was generated from the NWS Next-generation Radar (NEXRAD). Other 

meteorological forcing data such as air temperature, downward solar radiation, humidity 

and wind speed were obtained from the University of Washington (Maurer et al., 2001).  
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Table 2 lists the participating groups and models.  For more details on model description 

and simulation results, readers should refer to Reed et al. (2004). 

For this study, we obtained the river flow simulations from all participating 

models for the entire DMIP study period: 1993-1999.  The uncalibrated river simulation 

results are used for multi-model combination study.  Observed river flow data, along with 

the best calibrated single model flow simulations from the DMIP, are used as the 

benchmarks for comparing skill levels of the different multi-model predictions.  Unless 

otherwise specified, data period from 1993 to 1996 was used to train the model weights 

from the multi-model combination techniques, while the rest of the data period (1997-

1999) was used for validating the consistency of the multi-model predictions using these 

weights.

4. Multi-model Combination Results and Analysis

4.1 Model evaluation criteria

Before we present the results, two different statistical criteria are introduced: the 

Hourly Root Mean Square Error (HRMS) and the Pearson correlation coefficient (R).  

These criteria are used to compare the skill levels of different model predictions. These 

criteria are defined as follows:

 2

1
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n

t
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n
HRMS −= ∑

=

(3)



11

 

∑ ∑

∑

= =

=

−−

−
=

n

t

n

t
simtsimobstobs

n

t
simobstsimtobs

QnQQnQ

QQnQQ
R

1 1

2222

1

])()(][)()([

][))()((
(4)

4.2. Comparison of the Multi-model Consensus Predictions and the Uncalibrated 

Individual Model Predictions

In the first set of numerical experiments, the multi-model predictions were 

computed from the uncalibrated individual model predictions using different multi-model 

combination techniques described in Section 2.  Figures 3a and 3b compare the HRMS 

and R values of the individual model predictions against those of the SMA predictions.  

The horizontal axis in Figures 3a and 3b denotes the statistics from the individual models, 

while the vertical axis denotes that from the SMA predictions.  These figures clearly 

show that the statistics from the individual model predictions are worse than those of the 

SMA predictions.  These results are totally consistent with the conclusions from the paper 

by Georgakakos et al. (2004).

Figures 4 and 5 show the comparison results of the different multi-model

combination techniques against each other and against the best uncalibrated individual 

model predictions during the training and validation periods.  The horizontal axis denotes 

the different multi-model predictions, along with the best individual model predictions.  

Clearly shown in these figures is that all multi-model predictions have superior 

performance statistics compared to the best individual model predictions.  More 

interestingly, the multi-model predictions generated by MMSE and M3SE show 

noticeably better performance statistics than those by SMA.  This implies that there are 
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indeed benefits in investigating more sophisticated multi-model combination techniques.  

The predictions generated by WAM show worse performance statistics than the 

predictions generated by other multi-model combination techniques.  This suggests that 

the bias removal step incorporated by other multi-model combination techniques is 

important in improving predictive skills.

The obvious advantage of multi-model predictions from the training period carries 

into the validation period in almost all cases except for Blue River basin, where the 

performance statistics of the multi-model predictions are equal to or slightly worse than 

the best individual model predictions.  The reason for the relative poor performance in 

Blue River basin is that a noticeable change in flow characteristics is observed from the 

training period to the validation period (i.e., the average flow changes from 10.8cms in 

the training period to 7.17cms in the validation period, standard deviation from 27.6cms 

to 16.8cms).  This indicates that the stationarity assumption for river flow was violated.  

Consequently the skill levels of the predictions during validation period were adversely 

affected.

According to Reed et al. (2004), the calibrated model predictions from the 

distributed model operated by NWS OHD (hereafter, denoted as OHD-cal) have the best 

performance statistics.  To get a measure of how multi-model predictions fare against the 

best calibrated single model predictions, Figures 6a and 6b show the scatter plots of the 

HRMS and R for all multi-model combination techniques as well as for OHD-cal for the 

training and validation periods.  As revealed in the figures, MMSE and M3SE outperform 

the OHD-cal for all the basins except Blue River Basin during the training period.  
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During validation period, however, OHD-cal has shown a slight advantage in 

performance statistics over the multi-model predictions.  MMSE and M3SE are shown to 

be the best performing combination technique during validation period and have statistics 

closer to those of the OHD-cal, while WAM and SMA have worse performance statistics.

4.3. Application of Multi-model Combination Techniques to River Flow Predictions 

from Individual Months

Hydrological variables such as river flows are known to have a distinct annual 

cycle.  The predictive skills of hydrologic models for different months often mimic this 

annual cycle, as shown in Figure 7 which displays the performance statistics of the 

individual model predictions for Illinois River basin at Eldon (during the training 

period?).  Figure 7 reveals that a model might perform well in some months, but poorly in 

other months, when compared to other models.  This led us to hypothesize that the 

weights for different months should take on different sets of values to obtain consistently 

skillful predictions for all months.  To test this hypothesis, we applied multi-model 

combination techniques to flow values from each individual month separately.  Model 

weights for each calendar month were computed separately for all basins and all multi-

model combination techniques. 

Figures 8 and 9 show the comparison of HRMS and R statistics of all combination 

techniques applied to entire training periods and to individual months during training and 

validation periods.  Also shown is the statistics for OHD-cal.  From the figures, it is clear 

that the performance of combination techniques with monthly weights is generally better 

than that of combination techniques with single sets of weights for the entire training 
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period. During the validation period, however, the performance statistics using single sets 

of weights are generally better than those using monthly weights.  This is because that the 

stationarity assumptions are more easily violated when the multi-model techniques are 

applied monthly.

4.4. The Effect of Different Number of Models Used for Model Combination on 

Predictive Skills

One often asked question on multi-model predictions is how many models are 

needed to ensure good skills from multi-model predictions.  To address this question, we 

performed a series of experiments by sequentially removing different number of models 

from consideration. Figure 10 (create this figure) displays the test results.  Shown in the 

figure are the average HRMS and R statistics when different number of models were 

included in model combination. (add more discussion based on the actual figure)  To 

illustrate how important the skills of individual models are on the skills of the multi-

model predictions, we experimented with removing the best performing model and the 

worst performing model from consideration.  The results are also shown in Figure 10.  It 

is clear that excluding the best model would deteriorate the predictive skills more 

significantly compared to eliminating the weakest model. 

5. Conclusion and future direction

We have applied four different multi-model combination techniques to the multi-

model results from the DMIP, an international project sponsored by NWS Office of 

Hydrologic Development to intercompare seven state-of-the-art distributed hydrologic 
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models in use today (Smith et al., 2004).  This work is motivated by the fact that despite 

the progress in hydrologic model development, models still do not agree with each other.  

Developing more sophisticated models may lead to more agreement among models.  

Taking advantage the strengths of the existing models may be more profitable. 

We have learned several valuable lessons from this work.  First, simply averaging 

the individual model predictions would result in consensus multi-model predictions that 

are superior to any single member model predictions.  More sophisticated multi-model 

combination approaches such as MMSE and M3SE can improve the predictive skills 

even further. The results obtained here show that the multi-model predictions generated 

by MMSE and M3SE are even better than or at least are comparable to the best calibrated 

single model predictions.  This suggests that future operational hydrologic predictions 

should incorporate multi-model prediction strategy.

Second, in examining the different multi-model combination strategy, it was 

found that bias removal is an important step in improving the predictive skills of the 

multi-model predictions.  MMSE and M3SE predictions, which incorporated bias 

correction steps, perform noticeably better than WAM predictions, which did not.  Also 

important is the stationarity assumption when using multi-model combination techniques 

for predicting hydrologic variables such as river flows.  In Blue River basin where the 

average river flow values are significantly different between the training and validation 

periods, the advantages of multi-model predictions was lost during the validation period.  

This finding was also confirmed when the multi-model combination techniques were 

applied to river flows from individual months.
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Third, we attempted to address how many models are needed to ensure the good 

skills of multi-model predictions.  We found that at least (Insert more discussion based on 

the figure). We also found that the multi-model prediction skills are related to the skills 

of the individual member models.  If the prediction skill from an individual model is 

poor, removing this model from consideration does not affect the skill of the multi-model 

predictions very much.  On the other hand, removing the best model from consideration 

does adversely affect the multi-model prediction skill.

This work was based on a limited data set.  There are only seven models and a 

total of seven years of data.  The findings are necessarily subject to these limitations.  The 

regression based techniques used here (i.e., MMSE, M3SE and WAM) are vulnerable to 

multi-colinearity problem that may result in unstable or unreasonable estimates of the 

weights (Winkler, 1989).  This in turn would reduce the substantial advantages achieved 

employing these combination strategies.  There are remedies available to deal with 

colinearity problem (Shamseldin, et al., 1997; Yun et al., 2003).  This may entail more 

independent models to be included in the model combination.  

Multi-linear regression based approach presented here is only one type of the 

multi-model combination approach.  Over recent years, there are other model 

combination approaches developed in fields other than hydrology, such as the Bayesian 

Model Average (BMA) method, in which model weights are proportional to the 

individual model skills and can be computed recursively as more observation information 

become available (Hoeting et al., 1998?).  Model combination techniques are still young 
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in hydrology.  The results presented in this paper and other papers show promise that 

multi-model predictions will be a superior alternative to current single model prediction.
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Table 1. Basin Information

(Create)
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Participant Model Primary Application
Spatial unit for 
rainfall-runoff 

calculation

Rainfall-runoff 
scheme

Channel routing 
scheme

Agricultural Research 
Services (ARS) SWAT Land 

Management/Agricultural

Hydrologic 
Response Unit 

(HRU)

Multi-layer soil 
water balance

Muskingum or 
Variable storage

University of Arizona 
(ARZ) SAC-SMA Streamflow Forecasting Sub-basins SAC-SMA Kinematic Wave

Environmental Modeling 
Center (EMC)

NOAH Land 
Surface Model

Land-atmosphere 
interactions 1/8 degree grids

Multi-layer Soil 
water and energy 

balance
--

Hydrologic Research 
Center (HRC) HRCDHM Streamflow Forecasting Sub-basins SAC-SMA Kinematic Wave

Office of Hydrologic 
Development (OHD) HL-RMS Streamflow Forecasting 16 km2 grid cells SAC-SMA Kinematic Wave

Utah State University 
(UTS) TOPNET Streamflow Forecasting Sub-basins TOPMODEL --

University of Waterloo, 
Ontario (UWO) WATFLOOD Streamflow Forecasting 1-km grid Linear Storage 

Routing

Table 2. DMIP participant modeling groups and characteristics of their distributed hydrological models (Reed et al., 2004) 
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Figure 2. DMIP Test Basins; Circled one is the Illinois River basin with the outlet at Watts. 
(Source: DMIP website, 2001)



27



28

30 40 50 60 70 80

30

40

50

60

70

80

models(HRMS)

M
M

S
E

 (H
R

M
S

)

Elk River Basin at Tiff City

15 20 25 30 35 40 45
15

20

25

30

35

40

45
M

M
S

E
(H

R
M

S
)

Illinois River Basin at Watts

15 20 25 30

15

20

25

30
Illinois River Basin at Eldon

20 30 40 50 60 70 80

20

30

40

50

60

70

80
Illinois River Basin at Tahlequah

M
M

S
E

 (H
R

M
S

)

10 15 20 25
10

15

20

25

Models (HRMS)

Blue River Basin at Blue

UWO-uncal
UTS-uncal
OHD-uncal
HRC-uncal
EMC-uncal
ARZ-uncal
ARS-uncal
SMA
45 deg. line

Figure 3. Hourly root mean square error for MMSE versus uncalibrated member models for all 

the basins.



29

1
0

2 0

4 0

6 0

8 0

1 0 0

Illi n o is  R i v e r B a s in  a t T a h le q u a h  ( T ra i n i n g 1 9 9 3 - 9 6 )
O ve ra ll H R M S

H
R

M
S

2
0

2 0

4 0

6 0

8 0

1 0 0
H R M S  o v e r t ra i n i n g p e r io d

H
R

M
S

3
0

2 0

4 0

6 0

8 0

1 0 0

M o d e ls

H
R

M
S

H R M S  o v e r fo re c a s t p e r io d

U W O - u n c a l

U T S - u n c a l

O H D - u n c a l

H R C - u n c a l

E M C - u n c a l

A R Z - u n c a l

A R S - u n c a l

M M C

1
0

1 0

2 0

3 0

4 0

Illi no i s  R i ve r  B as in  a t  E L d o n  (T r a i n i n g  1 9 9 3 - 9 6 )
O ve r a ll H R M S

H
R

M
S

2
0

1 0

2 0

3 0

4 0
H R M S  o ve r tra i n i ng  pe r i od

H
R

M
S

3
0

1 0

2 0

3 0

4 0

M o d e ls

H
R

M
S

H R M S  o ver  fo re c a s t p e ri o d

U W O -u n c a l
U TS -u n c a l
O H D -u n c a l
H R C - u n c a l
E M C -u n c a l
A R Z- u n c a l
A R S -u n c a l
M M C

1
0

1 0

2 0

3 0

4 0

5 0

Il l ino i s  R i v e r B a s in  a t W a tts ( T r a i n i n g  1 9 9 3 - 9 6 )
O ve ra ll H R M S

H
R

M
S

2
0

1 0

2 0

3 0

4 0

5 0
H R M S  o ve r tra in ing p e rio d

H
R

M
S

3
0

1 0

2 0

3 0

4 0

5 0

M o d e ls

H
R

M
S

H R M S  o ve r fo r e c a s t p e r io d

1
0

1 0

2 0

3 0

B lu e  R i ve r  B a s in  a t B lu e  ( T ra i n i n g 1 9 9 3 - 9 6 )
O ve ra ll H R M S

H
R

M
S

2
0

5

1 0

1 5

2 0

2 5

3 0
H R M S  o ve r t ra i n i n g p e r io d

H
R

M
S

3
0

1 0

2 0

3 0

M o d e ls

H
R

M
S

H R M S  o v e r fo r e c a s t p e r io d

U W O - u n c a l

U T S - u n c a l

O H D - u n c a l

H R C - u n c a l

E M C - u n c a l

A R S - u n c a l

M M C

1
0

2 0

4 0

6 0

8 0

E lk  R i v e r  B a s i n  a t T i f f c i t y  ( T ra i n i n g 1 9 9 3 -9 6 )
O v e r a ll  H R M S

H
R

M
S

2
0

2 0

4 0

6 0

8 0
H R M S  o v e r t ra i n i n g p e r i o d

H
R

M
S

3
0

2 0

4 0

6 0

8 0

M o d e ls

H
R

M
S

H R M S  o v e r fo r e c a s t p e r i o d

Figure 4.a. Statistical comparison of the MMC’s performance (using uncalibrated memebr models) to the skill of any individual member models for all 
the basins.
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Figure 4.b. Statistical comparison of the MMC’s performance (using uncalibrated memebr models) to the skill of any individual member models for all 
the basins.
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Figure 7: Comparison of Hourly Root Mean Square Error of best calibrated model to all the multi-model combination techniques for all the 
basins
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Figure 9. Excerpts of flow simulation results for Illinois River basin at Watts during training and forecast period, 
illustrating the performance of all combination techniques as well as best calibrated model compared to observed 

flow
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Figure 10. Excerpts of flow simulation results for Illinois River basin at Eldon during training and forecast period, 
illustrating the performance of all combination techniques as well as best calibrated model compared to observed 

flow
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Figure 12: Hourly Root Mean Square error of different combination methods including monthly combination techniques for all the basins.
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Figure 13: Hourly Root Mean Square error of different combination methods including monthly combination techniques for all the basins.
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Figure 14. % Bias during Training anf forecast period for all the basins
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Figure 15. Number of models needed in the multi- model set for the best performance of combination
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Figure 16. The Least length of training period for optimal performance of MMSE




